.

| \
FErreer ‘m
_

Damping Ring Design and ATF Report

Andy Wolski

Lawrence Berkeley National Laboratory

May 10th 2002



Ty

Overview ’ﬁ\ﬂ

NLC

BrRECLEY Lam

« LBNL Staff for NLC Damping Ring Design
Alan Jackson (Lead)
Stefano de Santis, Andy Wolski (Accelerator Physics)
Kurt Kennedy (Vacuum)
Jin-Young Jung, Steve Marks (Magnets)
Mauro Pivi (Electron Cloud)

* Contents of Talk
— TRC
« program for Damping Rings
 status and plans
« impact on Damping Rings work
— Recent Developments in NLC Damping Rings
 estimates of collective effects in Main Damping Rings
— Experimental program: ATF
* Beam-Based Alignment

— Damping Rings R&D program
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Damping Rings Subgroup: Organization \ﬂ

HERKELEDY Lam

NLC

e Group Members:
Joe Rogers (leader)
Ralph Assmann
Winfried Decking
Jacques Gareyte
Kiyoshi Kubo
Andy Wolski

* Tasks:
— Define wiggler models
— Define misalignment and magnet error models
— Define diagnostic and correction models
— Evaluate emittances with misalignments and tuning algorithms
— Evaluate effect of IBS on extracted emittances
— Evaluate effects of impedance, 1ons, electron cloud
— Evaluate effect of extraction kicker on emittances
— Evaluate particle loss
— Evaluate extracted beam stability (against jitter)
— Evaluate preservation of polarization
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NLC Wiggler Models _

« TESLA DRs have >400 m of wiggler
— provide 90% of energy loss
— significant effect on the dynamics
* Improved fitting and modeling procedure is motivated
— recently started working with Alex Dragt
— already have much easier and more robust field fitting algorithm
— exploring best approach for constructing a dynamical map through the wiggler

« Results will be very useful for NLC (and light sources...)
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Emittance Tuning Simulations \

HERKELEDY Lam

* Report will refer to ATF experience

* Cross-checked emittance tuning algorithms between
MAD/MATLAB (DESY) and MERLIN (LBNL)
— NLC and TESLA use algorithms based on orbit and dispersion correction

— NLC algorithm performs satisfactorily with tight tolerances
* ~ 100 um initial alignment on quadrupoles and sextupoles
* ~ 100 prad roll errors on quadrupoles
« <1 mm rms vertical dispersion correction, requires 0.3 um BPM resolution
 correction achieved in 90% of cases

— Further work needed on TESLA correction
» chromaticity correction is local to the arcs (extreme for TESLA DR structure)
 using sextupoles to correct dispersion globally introduces strong betatron coupling

* Developed 2D ATL model and implemented in simulations
— allows consistent use of ground motion models across entire LC
— study tuning performance in better approximation to reality
— could be important for TESLA
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Emittance Tuning Simulations
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Emittance Tuning Simulations \

HERKELEDY Lam
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Collective Effects Y

HERKELEDY Lam

NLC

« Studies in progress (see later slides)

Impedance effects
— TESLA and NLC will operate satisfactorily with specified impedance...

— ...but specifications are very tight and great care will be needed in vacuum
chamber design and construction

* Space-Charge
— 1mplications of TESLA coupling scheme still not fully explored by TRC
— space-charge tune shift not entirely negligible in NLC MDR
— simulations required
* Electron Cloud
— a significant issue for NLC MDR and TESLA
« Fast Ion Instability
— needs more study
« Intra-Beam Scattering
— TESLA probably OK
— an issue for NLC MDR, studies ongoing...
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TRC Impact _

Closer collaboration between projects
— discussion of common issues, €.g. emittance tuning, collective effects

— cross-checking of codes and results

Further development of existing models

— wiggler work

Consistency with other systems in LC
— ground motion models
— component performance specifications (BPM resolution...)

Accelerated timescales
— effects of kickers, jitter etc.
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NLC Damping Rings Status /_\|\|ﬁi

NLC

« Lattice designs are stable
— Main Damping Rings, Pre-Damping Ring, Transport Lines
— Meet acceptance and damping specifications
— All main systems and components included in designs

« Algorithm developed for Low-Emittance Tuning

— Alignment tolerances and BPM resolutions have been determined by
analytical studies and simulations

e Systems and component designs
— REF cavities
— Main Damping Ring wiggler
— Dipoles and quadrupoles for Main Damping Ring
» Permanent Magnet and Electromagnet technologies have been considered
— Vacuum chamber
« Engineering designs
— Design work has shown practicality of Accelerator Physics design
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NLC MDR Collective Effects /—\I |'7?

« Recent (and ongoing) focus of NLC DR studies

* Various effects need to be considered:
— Long-Range Wake Fields
— Short-Range Wake Fields
— Touschek Scattering
— Intra-Beam Scattering
— Phase Transients from Beam Loading
— Electron Cloud

* single bunch

» coupled bunch

— Fast Ion Instability
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Long-Range Wake Fields /—\I\m

» Studies by Stefano de Santis
« Transverse dominated by resistive wall
* Feedback system with bandwidth ~ 350 MHz required
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Short-Range Wake Fields _

NLC

« Impedance model by Cho Ng (1999)
« Potential Well Distortion is a small effect (~ 5%)

o Z/n=25mL (mostly resistive)
— apply Boussard criterion to estimate microwave threshold
— bunch charge roughly a factor of three below threshold

Wke é VepC
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Touschek Lifetime ’_\| ¥
—

NLC

* Expect around 4 minutes with nominal parameters

— An issue for commissioning and tuning

— Potential heat load by particle loss (expect only ~ I0W from this mechanism)
e Lifetime can be improved by:

— 1mproving momentum acceptance

— coupling the beam
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Phase Transients ceceerd]
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 Beam loading in RF cavities gives phase shift along the train

— studied by tracking (Stefano de Santis; simulation code from John Byrd)
» Tolerances set by bunch compressors
« Effects from main cavities are not too severe

— linear phase variation along the train
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Electron Cloud /_\|\|ﬁi

HERKELEDY Lam

Significant discussion at LC02, and ECLOUDO02
Studies for NLC by Sam Heifets, Mauro Pivi and Miguel Furman
Single-bunch and coupled-bunch effects
Still significant uncertainties
— cloud density, distribution and dynamics
— 1nstability modes and models

Simple analysis suggests NLC MDR:
— 1s above (or at least close to) strong head-tail threshold
— could experience coupled bunch growth times ~ 20 us
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Fast Ion Instability /—\I\r?i

HERKELEDY Lam

» Jons generated from residual gas interact with bunches further down the
bunch train

e Oscillations can grow from Schottky noise
* Rise times can be fast, though growth strictly not exponential
* Some observations (ALS, PLS) though further verification is important
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ATF _

* Focus of recent work at the ATF has been on low emittance
— achieving low emittance (alignment)
— measuring low emittance (instrumentation)
 Beam-Based Alignment
— Marc Ross, Mark Woodley, Janice Nelson
— aim to measure BPM-quad offset to 20 um

* hope to reduce vertical emittance below 10 pm (20 pm achieved)

QF2 SF SD Combined Function Bend (QD) QFl ZV ZH

[T 1{m | g
¢ m? L
BPM BPM

— use method of quadrupole variation

* make a closed bump through target BPM-quadrupole

 determine kick from quadrupole by fitting difference orbit resulting from trim;
for a given bump, gradient of kick vs trim gives offset

 plot offset vs BPM reading for different bumps, to determine BPM-quad offset

Thanks to Mark Woodley for permission to draw from his talk at LC02
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BBA Challenges /_\|\|ﬂ

BrRECLEY Lam

NLC

« Intensity dependence
— affects BPM reading

— affects BPM resolution
e 20 pum at 10'° per bunch, 40 um at 0.5x10'° per bunch

— average over 20 orbits
— monitor intensity stability
 BPMs affected by beam losses
— limits ranges for bumps and trims
— monitor intensity stability
* Energy dependence
— dispersion (mostly horizontal) at BPMs
— 1nclude energy error in orbit fits
e Time limitation
— acquire orbits at 3 Hz machine rate
— 20 orbits for 25 settings for 100 BPMs for 2 planes (10 hours)

— automated data taking



BBA at ATF
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QF2R.4: Y bump= =800 um , dQTRIM= 3 amps
fitled kick= -43.0963 + 0.9563 urad (chi2/dof= 1.6360, data=01dec11)
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Example: BPMSY reads -261 um when
beam has zero offset in QF2R.3
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BBA Quadrupole Results
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ATF DR: BPM Offsets for QF 1R
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Low emittance tuning has found an orbit that
minimizes vertical offset in the quadrupoles!




BBA Sextupole Results
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» Low emittance reference orbit follows
sextupole offsets to some extent.

* Note 300 um systematic offset
between quadrupoles and sextupoles.
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ATF Recent Work _

* Further BBA studies were performed in early March
— Results for arc quadrupoles were reproducible
— Turning off correctors steered beam through the quadrupole centers
« ATF alignment is extremely good
— Sextupole results were not as well reproducible
» weak signal; hysteresis...

» Tests with skew correction using OTR and wire scanners

— Even small errors in wire scanner measurements make it difficult in practice
to determine vertical emittance and coupling
— Data from OTR is extremely useful

 Itis currently believed that an imaging monitor of some kind will be required in
the Damping Rings for effective tuning

— There is now an active collaboration with DESY (TTF), to find the best OTR
target material
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Continuing BBA Work _/_\|\|ﬂi

HERKELEDY Lam

Complete measurements for all BPMs
— 1nclude BPMs in the straights

— 1teration may improve results
« Use BBA data in constructing new reference orbit for low emittance tuning
» Understand origins of poor orbit fits
« Verify stability by repeating measurements

« Understand systematic offsets in quadrupole-sextupole alignment

— systematics possibly introduced by differential pole saturation

« New BPM system

— 2 um resolution, scheduled for installation in November
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Damping Rings R&D Program -’—:ﬂ'\lq

e LC luminosity crucially dependent on Damping Rings performance
— need to minimize uncertainties as much as possible
* High priority issues:
— Achieving Low Emittance
* Routine operation with very low vertical emittance still needs to be demonstrated
« Continue work on BBA at ATF
» Make use of other machines, e.g. SLS, SPRINGS...
* Some challenges for instrumentation/measurement
— Fast Ion Instability
* Verify theoretical predictions (e.g. by further work on ALS)
* Develop simulation codes
— Electron Cloud

« Development of models and codes, to be able to make accurate predictions
of cloud build-up and effects on the beam

» Find the best way to prevent the cloud build-up (TiN...)
— Intra-Beam Scattering
* Need to fully understand ATF data and verify theory
» Develop strategies to overcome limitation on the Damping Rings
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Damping Rings R&D Program f;ﬂr\|&|ﬁ?

e QOther issues:

— Nonlinear Dynamics
* Improve dynamic aperture/momentum acceptance
» Wiggler models
— Beam-Radiation Interaction
« Damping Ring wigglers provide an extreme regime
— Injection Transients

* Coupling between injected and stored trains
(e.g. through wake fields or feedback system)

— Damping Time

 Injection phase space mismatch from nonlinear distortion
— Instrumentation

» Especially for measuring low emittance beams
— Kicker Compensation

— Polarization



